Implementation of high-performance and high-yield nanoscale hafnium zirconium oxide based ferroelectric tunnel junction devices on 300 mm wafer platform

Author:

Liehr Maximilian1ORCID,Hazra Jubin1,Beckmann Karsten1ORCID,Mukundan Vineetha1ORCID,Alexandrou Ioannis2ORCID,Yeow Timothy2ORCID,Race Joseph2,Tapily Kandabara3ORCID,Consiglio Steven3ORCID,Kurinec Santosh K.4ORCID,Diebold Alain C.1ORCID,Cady Nathaniel1ORCID

Affiliation:

1. College of Nanoscale Science and Engineering, SUNY Polytechnic Institute 1 , Albany, New York 12203

2. Thermo Fisher Scientific 2 Achtseweg Noord 5, 5651 GG Eindhoven, The Netherlands

3. TEL Technology Center, America, LLC 3 , Albany, New York 12203

4. Department of Electrical and Microelectronic Engineering, Rochester Institute of Technology 4 , Rochester, New York 14623

Abstract

In this work, hafnium zirconium oxide (HZO)-based 100 × 100 nm2 ferroelectric tunnel junction (FTJ) devices were implemented on a 300 mm wafer platform, using a baseline 65 nm CMOS process technology. FTJs consisting of TiN/HZO/TiN were integrated in between metal 1 (M1) and via 1 (V1) layers. Cross-sectional transmission electron microscopy and energy dispersive x-ray spectroscopy analysis confirmed the targeted thickness and composition of the FTJ film stack, while grazing incidence, in-plane x-ray diffraction analysis demonstrated the presence of orthorhombic phase Pca21 responsible for ferroelectric polarization observed in HZO films. Current measurement, as a function of voltage for both up- and down-polarization states, yielded a tunneling electroresistance (TER) ratio of 2.28. The device TER ratio and endurance behavior were further optimized by insertion of thin Al2O3 tunnel barrier layer between the bottom electrode (TiN) and ferroelectric switching layer (HZO) by tuning the band offset between HZO and TiN, facilitating on-state tunneling conduction and creating an additional barrier layer in off-state current conduction path. Investigation of current transport mechanism showed that the current in these FTJ devices is dominated by direct tunneling at low electric field (E < 0.4 MV/cm) and by Fowler–Nordheim (F–N) tunneling at high electric field (E > 0.4 MV/cm). The modified FTJ device stack (TiN/Al2O3/HZO/TiN) demonstrated an enhanced TER ratio of ∼5 (2.2× improvement) and endurance up to 106 switching cycles. Write voltage and pulse width dependent trade-off characteristics between TER ratio and maximum endurance cycles (Nc) were established that enabled optimal balance of FTJ switching metrics. The FTJ memory cells also showed multi-level-cell characteristics, i.e., 2 bits/cell storage capability. Based on full 300 mm wafer statistics, a switching yield of >80% was achieved for fabricated FTJ devices demonstrating robustness of fabrication and programming approach used for FTJ performance optimization. The realization of CMOS-compatible nanoscale FTJ devices on 300 mm wafer platform demonstrates the promising potential of high-volume large-scale industrial implementation of FTJ devices for various nonvolatile memory applications.

Funder

Air Force Research Laboratory

Semiconductor Research Corporation

Publisher

American Vacuum Society

Subject

Materials Chemistry,Electrical and Electronic Engineering,Surfaces, Coatings and Films,Process Chemistry and Technology,Instrumentation,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3