Effect of electrochemical cycling on microstructures of nanocomposite silicon electrodes using hyperpolarized 129Xe and 7Li NMR spectroscopy

Author:

Mao Yougang1,Karan Naba K.,Kumar Ravi2,Hopson Russell1,Guduru Pradeep R.2,Sheldon Brian W.2,Wang Li-Qiong1

Affiliation:

1. Department of Chemistry, Brown University, Providence, Rhode Island 02912

2. School of Engineering, Brown University, Providence, Rhode Island 02912

Abstract

The microstructural stability of composite electrodes during electrochemical cycling is critically important as it dictates the performance of Li-ion batteries. The issue becomes even more important for the high capacity alloying anode such as silicon that typically exhibits dramatic lithiation–delithiation-induced volume changes. The solid electrolyte interphase (SEI) layer formed on the active electrode surface has a profound effect on the overall microstructural stability of composite electrodes. An ideal SEI layer allows Li+ ions in and out of the electrode, but is an insulator to electrons, preventing the electrolyte from being further reduced. However, the SEI layers formed during initial lithiation may experience changes or degradation with subsequent cycling, adversely affecting the electrode performance. A combination of hyperpolarized 129Xe and 7Li nuclear magnetic resonance spectroscopies was applied to probe the microstructures of nanocomposite silicon electrodes at various stages of the lithiation–delithiation cycle. The results obtained from this study shed light on the degradation mechanism of nanocomposite Si electrodes upon electrochemical cycling and should prove useful in the effort to design more robust electrodes in the future.

Funder

United state department of Energy

Advance Grant

Publisher

American Vacuum Society

Subject

Surfaces, Coatings and Films,Surfaces and Interfaces,Condensed Matter Physics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Hyperpolarisation techniques;Nuclear Magnetic Resonance;2023-11-29

2. 129Xe NMR analysis of pore structures and adsorption phenomena in rare-earth element phosphates;Microporous and Mesoporous Materials;2022-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3