Detecting Credit Card Fraud using Machine Learning

Author:

Almuteer Arjwan H.,Aloufi Asma A.,Alrashidi Wurud O.,Alshobaili Jowharah F.,Ibrahim Dina M.

Abstract

Credit card is getting increasingly more famous in budgetary exchanges, simultaneously frauds are likewise expanding. Customary techniques use rule-based master frameworks to identify fraud practices, ignoring assorted circumstances, the outrageous lopsidedness of positive and negative examples. In this paper, we propose a CNN-based fraud detection system, to catch the natural examples of fraud practices gained from named information. Bountiful exchange information is spoken to by an element lattice, on which a convolutional neural organization is applied to recognize a bunch of idle examples for each example. Trials on true monstrous exchanges of a significant business bank show its boss presentation contrasted and some best-in-class strategies. The aim of this paper is to merge between Convolutional Neural Network (CNN), Long-Short Term Memory (LSTM), and Auto-encoder (AE) to increase credit card fraud detection and enhance the performance of the previous models. By using these four models; CNN, AE, LSTM, and AE&LSTM. each of these models is trained by different parameter values highest accuracy has been achieved where the AE model has accuracy =0.99, the CNN model has accuracy =0.85, the accuracy of the LSTM model is 0.85, and finally, the AE&LSTM model obtained an accuracy of 0.32 by 400 epoch. It is concluded that the AE classifies the best result between these models.

Publisher

International Association of Online Engineering (IAOE)

Subject

Computer Networks and Communications,Computer Science Applications

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3