Implementation Mixed Wireless Network with Lower Number of Wi-Fi Routers for Optimal Coverage

Author:

Muttair Karrar Shakir,Zahid Ali Z. Ghazi,Al-Ani Oras A. Shareef,Q. AL-Asadi Ahmed Mohammed,Mosleh Mahmood F.

Abstract

With the development of various wireless communication networks, Wi-Fi Router positioning and deployment systems have become widely popular in recent years to improve coverage in various environments. In this paper, we present an appropriate mechanism for defining the deployment of Wi-Fi Routers to improve coverage in the Oxford Languages Institute (OLI) environment. In addition, the institute's environment was simulated using the Wireless InSite (WI) Package. In this work, two types of Wi-Fi Routers are used. The first is the TP-Link, while the second is the Rocket. These two devices operate at 2.4 and 5 GHz frequencies. There are two objectives in this work. The first aim is to determine the best location to cover the simulated scene environment in a better way. The second aim is to compare Wi-Fi Routers to find out which Wi-Fi Router is better and find out how many Wi-Fi Routers we need to cover the institute's environment. The comparison between Wi-Fi Routers was based on basic parameters to measure the performance of wireless networks, the most important of which are Coverage Rate (CR) Percentage, Signal Quality Rate (SQR), and Received Power Rate (RPR). According to the results that were shown on the Graphical User Interface (GUI) using MATLAB Software. We noticed that the CR, SQR, and RPR of the Rocket are 83.9080%, 97.0082%, and -35.2337 dBm respectively, and these results are better than the results provided by the TP-Link, as it gave the CR, SQR, and RPR are 32.1839%, 77.8690%, and -58.1685 dBm, respectively. Finally, we conclude that CR using the Rocket is good and we need one device to cover the institute’s environment. While CR using the TP-Link is bad and we need five devices to reach the coverage provided by the Rocket because the Rocket has high transmitted power and gain capacity.

Publisher

International Association of Online Engineering (IAOE)

Subject

General Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Design Wideband MIMO Antenna for UWB Applications;2023 IEEE Jordan International Joint Conference on Electrical Engineering and Information Technology (JEEIT);2023-05-22

2. An Efficient Tasks Scheduling Algorithm for Drone Operations in the Indoor Environment;International Journal of Online and Biomedical Engineering (iJOE);2022-08-31

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3