Determination of Optimal Processing Conditions for the Production of Polyamide 11 Parts using the Laser Sintering Process

Author:

Wegner Andreas,Harder Ron,Witt Gerd,Drummer Dietmar

Abstract

Due to the advancements during the last decade, the laser sintering process has achieved a high technical level, allowing for Rapid Manufacturing of parts in some applications. However, only few polymers are commercially available for the process. Polyamide 12 dominates the market with share of nearly 90 %. Other laser sintering materials differ in part properties from PA 12. Therefore, they are more suitable for some specific applications. Within these, Polyamide 11 has the highest distribution on the market. PA 11 offers some advantages like significant higher part ductility but also some disadvantages like more warpage or higher processing temperatures. However, literature provides in general only little information on the processing of PA 11 and how to achieve optimal processing conditions. A DOE approach using the response surface methodology was utilized to study the correlations between process parameters and part properties. Laser power, scan speed, hatch distance, layer thickness and outline energy density were varied in order to improve the part quality considering mechanical properties, surface roughness and part density. Additionally, results for process influences and part properties were compared with those found for Polyamide 12 in order to derive general correlations. Based on the performed study, optimized process parameter sets are established for PA 11 resulting in improved part properties.

Publisher

International Association of Online Engineering (IAOE)

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3