High Performance for Predicting Diabetic Nephropathy Using Stacking Regression of Ensemble Learning Method

Author:

Muflikhah LaililORCID,G. Nurfansepta AmiraORCID,A. Bachtiar Fitra,E. Ratnawati Dian

Abstract

Diabetes may lead to several problems, one of the most prevalent and deadly of which is diabetic nephropathy. Therefore, the condition represents a significant threat to one’s health since it has the potential to cause irreversible harm to the kidneys’ ability to operate. A significant portion of the research that is being conducted now is focused on determining how accurately diabetic people may be predicted to develop kidney illness. Considering this, the research suggests a regression stacking approach for predicting albumin levels. These albumin values will serve as a reference for the incidence of diabetic nephropathy disease. They will be derived from the medical records of patients. The utilization of stacking regression from three different ensemble approaches, using Random Forest and CatBoost regressors, while the Huber algorithm is used as a meta-learner. The accuracy with which the combination of parameters that are employed is determined is a significant factor. It contributes to the high degree of performance that the ensemble approach achieves. Therefore, in this investigation, a grid search was carried out to tune the hyperparameters of both regressor models. We evaluated the performance of the proposed model using accuracy, MAPE, RMSE, and MSE values. The experimental findings demonstrate great performance. Three selected variables including quantitative UACR, semi-quantitative UACR, and urinary creatinine, achieved high performance. Overall, the performance obtained an accuracy rate of more than 98% with an error rate (MAPE, RMSE, and MSE values) of less than 1%. In conclusion, the stack regressor model can be implemented to predict diabetic nephropathy using clinical datasets.

Publisher

International Association of Online Engineering (IAOE)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3