Power Load Forecasting Based on Wireless Sensor Networks

Author:

Liu Xingping,Li Weidong

Abstract

<span style="font-family: 'Times New Roman',serif; font-size: 12pt; mso-fareast-font-family: SimSun; mso-fareast-theme-font: minor-fareast; mso-ansi-language: EN-US; mso-fareast-language: ZH-CN; mso-bidi-language: AR-SA;">At present, wireless sensor networks (WSN) technology is a field of much research interest in the area of information technology. The application of wireless sensor networks is expected to be very broad. With the development of communication protocol and their corresponding components, wireless sensor networks technology plays an increasingly important role in the power industry. The analysis and forecast of electric power data is essential to the construction and operation of the power network. Through the wireless sensor networks, we can obtain comprehensive power data. Then we can better forecast the power load through the data we obtain from the wireless sensor networks. In this paper, we propose an improved LSSVM method. We collect the power data by the wireless sensor networks and use the improved LSSVM method to forecast the power load. Experimental results demonstrate the effectiveness of the proposed method.</span>

Publisher

International Association of Online Engineering (IAOE)

Subject

General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3