Xoodyak, a lightweight cryptographic scheme

Author:

Daemen Joan,Hoffert Seth,Peeters Michaël,Van Assche Gilles,Van Keer Ronny

Abstract

In this paper, we present Xoodyak, a cryptographic primitive that can be used for hashing, encryption, MAC computation and authenticated encryption. Essentially, it is a duplex object extended with an interface that allows absorbing strings of arbitrary length, their encryption and squeezing output of arbitrary length. It inherently hashes the history of all operations in its state, allowing to derive its resistance against generic attacks from that of the full-state keyed duplex. Internally, it uses the Xoodoo[12] permutation that, with its width of 48 bytes, allows for very compact implementations. The choice of 12 rounds justifies a security claim in the hermetic philosophy: It implies that there are no shortcut attacks with higher success probability than generic attacks. The claimed security strength is 128 bits. We illustrate the versatility of Xoodyak by describing a number of use cases, including the ones requested by NIST in the lightweight competition. For those use cases, we translate the relatively detailed security claim that we make for Xoodyak into simple ones.

Publisher

Universitatsbibliothek der Ruhr-Universitat Bochum

Subject

Applied Mathematics,Computational Mathematics,Computer Science Applications,Software

Cited by 40 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. High throughput acceleration of NIST lightweight authenticated encryption schemes on GPU platform;Cluster Computing;2024-05-20

2. Xoodyak Under SCA Siege;2024 27th International Symposium on Design & Diagnostics of Electronic Circuits & Systems (DDECS);2024-04-03

3. Security-Driven Performance Analysis of Lightweight Cryptography for Energy Efficiency Applications;2024 IEEE 8th Energy Conference (ENERGYCON);2024-03-04

4. Performance- and Energy-Aware Gait-Based User Authentication With Intermittent Computation for IoT Devices;IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems;2024-02

5. Multimixer-156: Universal Keyed Hashing Based on Integer Multiplication and Cyclic Shift;Lecture Notes in Computer Science;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3