Deoxyelephantopin alleviates lipopolysaccharide-induced septic lung injury through inhibiting NF-ĸB/STAT3 axis

Author:

Wang Shu,Chen Yuefeng

Abstract

Sepsis induces multiple organ dysfunction syndromes, such as acute kidney, liver, or lung injury. Septic lung injury is associated with excessive apoptosis and inflammatory responses in hepatocytes. Deoxyelephantopin is a sesquiterpene lactone found in Elephantopus scaber L, and has immunomodulatory, antibacterial, anti-inflammatory, and antifungal properties. The role of deoxyelephantopin in sepsis-associated lung injury was investigated. First, human bronchial epithelial cells (BEAS-2B) and human pulmonary artery endothelial cells (HPAEC) were treated with lipopolysaccharide to induce cytotoxicity. Treatment with lipopolysaccharide reduced cell viability of BEAS-2B and HPAEC, and promoted cell apoptosis through down-regulation of poly (ADP-ribose) polymerase (PARP) and B-cell lymphoma 2 (Bcl-2), and up-regulation of cleaved PARP and B-cell lymphoma-associated X protein (Bax). Second, lipopolysaccharide-treated BEAS-2B and HPAEC were incubated with increasing concentrations of deoxyelephantopin, that is, 1, 5, or 10 μM. Deoxyelephantopin enhanced cell viability and reduced cell apoptosis of lipopolysaccharide-treated BEAS-2B and HPAEC. Third, deoxyelephantopin attenuated lipopolysaccharide-induced decrease of superoxide dismutase and glutathione, and increase of malondialdehyde and myeloperoxidase in BEAS-2B and HPAEC. Moreover, deoxyelephantopin also weakened lipopolysaccharide-induced increase of tumor necrosis factor-α, interleukin (IL)-1β, and IL-6. Finally, deoxyelephantopin decreased protein expression of p-p65 and p-signal transducer and activator of transcription 3 (STAT3) in lipopolysaccharide-treated BEAS-2B and HPAEC. In conclusion, deoxyelephantopin exhibited anti-oxidative and anti-inflammatory effects against lipopolysaccharide-treated BEAS-2B and HPAEC through inactivation of nuclear factor kappa B/STAT3 signaling.

Publisher

Codon Publications

Subject

General Medicine,Immunology and Allergy,Immunology,Pulmonary and Respiratory Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3