Mineral chemistry of gahnite from the Lalor metamorphosed VHMS deposit, Snow Lake, Manitoba

Author:

Wehrle Elliot A.1,McDonald Andrew M.1,Tinkham Douglas K.1

Affiliation:

1. Harquail School of Earth Sciences, Laurentian University, 935 Ramsey Lake Road, Sudbury, Ontario P3E 2C6, Canada

Abstract

ABSTRACTGahnite (ZnAl2O4) is a common accessory mineral at the Lalor auriferous Zn-Cu metamorphosed VHMS deposit (Snow Lake, Manitoba). To evaluate factors influencing its crystal chemistry, gahnite representing a range of textures, host mineral assemblages, and whole-rock compositions were analyzed for major, minor, and trace elements. The analyzed grains span the range of Ghn63-75Her15-22Spl10-18 and are un-zoned with respect to Zn, Fe, and Mg. A moderate positive correlation exists between Mg in gahnite and whole-rock MgO (R2 = 0.66). The minor- and trace-element chemistry of the Lalor gahnite is dominated by Mn (400–2600 ppm), Si (<25–250 ppm), and V (<25–2300 ppm). Based on the limited variability in gahnite major-element composition, as well as similar partitioning coefficients of Zn and Fe between sphalerite-gahnite pairs (indicating comparable metamorphic conditions of crystallization for the analyzed gahnite), metamorphic grade is interpreted to have had the strongest influence on gahnite major-element chemistry. Most sphalerite occurs with pyrite and pyrrhotite, an assemblage that would have buffered fS2 and fixed the Zn:Fe ratio in sphalerite, which also could have contributed to the narrow compositional range observed in gahnite. Magnesium was not an essential component of the sphalerite-consuming, gahnite-producing reactions, so its concentration in gahnite was more readily affected by whole-rock Mg. A small proportion of gahnite grains may have formed from the destabilization of silicates (staurolite and biotite), rather than sphalerite. These possible gahnite-forming reactions (sphalerite- versus biotite- or staurolite-consuming) appear to have had the strongest control on gahnite minor- and trace-element chemistry, as gahnite formed from sphalerite desulfidation reactions shows a range in Mn (450–2600 ppm) and restricted V/Mn values (<0.5), while gahnite interpreted to have formed from the dehydration of biotite and staurolite shows restricted Mn (<430 ppm) and a range of V/Mn values (0.75–5.5). Further work is recommended to investigate the possibility of using gahnite trace-element signatures (such as with Mn and V) to discriminate between gahnite that crystallized in sphalerite-rich and sphalerite-barren environments, as this concept has potential for application to exploration using detrital gahnite.

Publisher

Mineralogical Association of Canada

Subject

Geochemistry and Petrology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3