Affiliation:
1. Queens's Facility for Isotope Research (QFIR), Department of Geological Sciences and Geological Engineering, Miller Hall/Bruce Wing, Queen's University, 35 Union Street, Kingston, Ontario K7L 3N6, Canada
2. McDonald Institute, Canadian Particle Astrophysics Research CentreStirling Hall, Department of Physics, Engineering Physics & Astronomy, Queen's University, 64 Bader Lane, Ontario K7L 3N6, Canada
Abstract
ABSTRACT
Different types of sediment-hosted whole-rock Pb isotope (206Pb/204Pb, 207Pb/204Pb, 208Pb/204Pb) compositions were determined from phyllites, carbonaceous phyllites (>1% TOC), and meta-litharenites belonging to the Serra do Garrote Formation, which is part of the Proterozoic Vazante Group, Brazil. Results were integrated with lithogeochemistry in order to identify the Pb isotopic signature of Zn enrichment (up to 0.24 wt.% Zn) associated with meta-siliciclastic-hosted sulfide mineralization that formed prior to the Brasiliano Orogeny (850 to 550 Ma) in order to (1) understand the nature of siliciclastic sediment sources, (2) identify possible metal sources in pre-orogenic meta-siliciclastic-hosted Zn mineralization, and (3) evaluate the genetic links between the Zn enrichment in the relatively reduced phyllite package, and different styles of syn-orogenic Zn ± Pb mineralization (hypogene Zn-silicate and Zn-Pb sulfide) in overlying dolomitic carbonates throughout the Vazante-Paracatu Zn District, Brazil.
The whole-rock 206Pb/204Pb and 207Pb/204Pb isotope ratios of meta-siliciclastic rocks plot as positively sloping, sub-parallel arrays with radiogenic, upper continental crust compositions, which could represent a detrital contribution from at least two upper continental crust sources. However, the 206Pb/204Pb versus207Pb/204Pb isotope system does not distinguish between Zn-enriched samples and un-mineralized samples. In the whole-rock 206Pb/204Pb–208Pb/204Pb plot, Zn-enriched samples form a flat trend of lower 208Pb/204Pb values (38.3 to 39.5) compared to the Zn-poor ones that follow common upper crustal trends. Zinc-enriched samples have low whole-rock Th/U values (<4) and higher whole-rock U concentrations compared to unmineralized samples. These support the hypothesis that U (± Pb) was added by pre-orogenic metalliferous fluids, which were in turn derived from underlying Paleoproterozoic and Archean basement rocks. Due to U addition, the original whole-rock thorogenic and uranogenic Pb isotope systems were decoupled in mineralized samples. Pre-orogenic metalliferous fluids have similar present-day first-order characteristics, including: (1) relatively high U/Pb and (2) low Th/U values, when compared to galena in the major carbonate-hosted Zn ± Pb deposits (Vazante, Morro Agudo, Ambrosia, Fagundes) in the Vazante Group. These results support the hypothesis that Zn-rich layers and veins in mineralized carbonaceous phyllites could be linked to the same origins as carbonate-hosted mineral deposits throughout the Vazante Basin, but further data are warranted. We suggest that the tectonic evolution of the Vazante Basin saw multiple phases of Zn-rich mineralization over protracted time periods from around 1200 to 550 Ma.
Publisher
Mineralogical Association of Canada
Subject
Geochemistry and Petrology
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献