Effects of Grain Size, Cooling Rate, and Sample Preparation on the Phase Transition from Protoenstatite to Clinoenstatite

Author:

Ohi Shugo1,Osako Tatsuya2,Miyake Akira2

Affiliation:

1. Faculty of Education, Shiga University, 2-5-1 Hiratsu, Otsu, 520-0862, Japan

2. Graduate School of Science, Kyoto University, Kitashirakawa-Oiwake, Sakyo, Kyoto, 606-8502, Japan

Abstract

ABSTRACT X-ray diffraction experiments were carried out with protoenstatite, chemical composition Mg2Si2O6, in order to clarify the conditions under which protoenstatite can be retained at room temperature. Our results show that grain size, cooling rate, and shear stress during sample preparation clearly affect the transition from protoenstatite to clinoenstatite. Smaller protoenstatite grains were more likely to be retained, and the relationship between the retained volume ratio of the protoenstatite and grain size was statistically consistent with martensitic nucleation. The most protoenstatite was retained in the experiment using a cooling rate of 3 °C/min; the retained volume ratio decreased in experiments with both faster and slower cooling rates. The martensitic transformation of protoenstatite to clinoenstatite is promoted by shear stress caused by a fast cooling rate. Shear stress caused by grinding and polishing also promotes the transformation, but ion milling, used to prepare samples for transmission electron microscope observation, leaves the protoenstatite unchanged. Therefore, samples including protoenstatite should be prepared without producing shear stress so that the protoenstatite can be observed.

Publisher

Mineralogical Association of Canada

Subject

Geochemistry and Petrology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3