Author:
Kwon Miyun,Strobel Scott A.
Abstract
The glycine binding riboswitch forms a unique tandem aptamer structure that binds glycine cooperatively. We employed nucleotide analog interference mapping (NAIM) and mutagenesis to explore the chemical basis of glycine riboswitch cooperativity. Based on the interference pattern, at least two sites appear to facilitate cooperative tertiary interactions, namely, the minor groove of the P1 helix from aptamer 1 and the major groove of the P3a helix from both aptamers. Mutation of these residues altered both the cooperativity and binding affinity of the riboswitch. The data support a model in which the P1 helix of the first aptamer participates in a tertiary interaction important for cooperativity, while nucleotides in the P1 helix of the second aptamer interface with the expression platform. These data have direct analogy to well-characterized mutations in hemoglobin, which provides a framework for considering cooperativity in this RNA-based system.
Publisher
Cold Spring Harbor Laboratory
Cited by
68 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献