Abstract
AbstractThis paper is the third in a series of four papers aiming to describe the (almost integral) Chow ring of $$\overline{\mathcal {M}}_3$$
M
¯
3
, the moduli stack of stable curves of genus 3. In this paper, we compute the Chow ring of $$\widetilde{{\mathcal {M}}}_3^7$$
M
~
3
7
with $${\mathbb {Z}}[1/6]$$
Z
[
1
/
6
]
-coefficients.
Funder
Royal Institute of Technology
Publisher
Springer Science and Business Media LLC
Reference23 articles.
1. Abramovich, D., Olsson, M., Vistoli, A.: Twisted stable maps to tame Artin stacks. J. Algebr. Geom. 20, 399–477 (2011)
2. Arsie, A., Vistoli, A.: Stacks of cyclic covers of projective spaces. Compos. Math. 140(3), 647–666 (2004)
3. Catanese, F.: Pluricanonical gorenstein curves. Enumer. Geom. Class, Algebraic Geom (1982)
4. Canning, S., Larson, H.: The Chow rings of the moduli spaces of curves of genus 7, 8, and 9. arXiv:2104.05820 (2021)
5. Di Lorenzo, A.: The Chow ring of the stack of hyperelliptic curves of odd genus. Int. Math. Res. Not. IMRN (2019). https://doi.org/10.1093/irmn/rnz101