Tilted biorthogonal ensembles, Grothendieck random partitions, and determinantal tests

Author:

Gavrilova Svetlana,Petrov Leonid

Abstract

AbstractWe study probability measures on partitions based on symmetric Grothendieck polynomials. These deformations of Schur polynomials introduced in the K-theory of Grassmannians share many common properties. Our Grothendieck measures are analogs of the Schur measures on partitions introduced by Okounkov (Sel Math 7(1):57–81, 2001). Despite the similarity of determinantal formulas for the probability weights of Schur and Grothendieck measures, we demonstrate that Grothendieck measures are not determinantal point processes. This question is related to the principal minor assignment problem in algebraic geometry, and we employ a determinantal test first obtained by Nanson in 1897 for the $$4\times 4$$ 4 × 4 problem. We also propose a procedure for getting Nanson-like determinantal tests for matrices of any size $$n\ge 4$$ n 4 , which appear new for $$n\ge 5$$ n 5 . By placing the Grothendieck measures into a new framework of tilted biorthogonal ensembles generalizing a rich class of determinantal processes introduced by Borodin (Nucl Phys B 536:704–732, 1998), we identify Grothendieck random partitions as a cross-section of a Schur process, a determinantal process in two dimensions. This identification expresses the correlation functions of Grothendieck measures through sums of Fredholm determinants, which are not immediately suitable for asymptotic analysis. A more direct approach allows us to obtain a limit shape result for the Grothendieck random partitions. The limit shape curve is not particularly explicit as it arises as a cross-section of the limit shape surface for the Schur process. The gradient of this surface is expressed through the argument of a complex root of a cubic equation.

Publisher

Springer Science and Business Media LLC

Reference84 articles.

1. Al Ahmadieh, A., Vinzant, C.: Characterizing principal minors of symmetric matrices via determinantal multiaffine polynomials, arXiv preprint (2021). arXiv:2105.13444 [math.AG]

2. Al Ahmadieh, A., Vinzant, C.: Determinantal representations and the image of the principal minor map, arXiv preprint (2022). arXiv:2205.05267 [math.AG]

3. Aggarwal, A., Borodin, A., Petrov, L., Wheeler, M.: Free fermion six vertex model: symmetric functions and random Domino Tilings. Sel. Math. 29, 36 (2023) arXiv:2109.06718 [math.PR]

4. Aggarwal, A., Borodin, A., Wheeler, M.: Colored fermionic vertex models and symmetric functions, arXiv preprint (2021). arXiv:2101.01605 [math.CO]

5. Ahn, A.: Global universality of Macdonald plane partitions. Ann. Inst. H. Poincaré 56(3), 1641–1705 (2020). arXiv:1809.02698 [math.PR]

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3