Abstract
AbstractAs a quantum affinization, the quantum toroidal algebra $${U_{q,{{\overline{q}}}}(\ddot{{\mathfrak {gl}}}_n)}$$
U
q
,
q
¯
(
gl
¨
n
)
is defined in terms of its “left” and “right” halves, which both admit shuffle algebra presentations (Enriquez in Transform Groups 5(2):111–120, 2000; Feigin and Odesskii in Am Math Soc Transl Ser 2:185, 1998). In the present paper, we take an orthogonal viewpoint, and give shuffle algebra presentations for the “top” and “bottom” halves instead, starting from the evaluation representation $${U_q({\dot{{\mathfrak {gl}}}}_n)}\curvearrowright {{\mathbb {C}}}^n(z)$$
U
q
(
gl
˙
n
)
↷
C
n
(
z
)
and its usual R-matrix $$R(z) \in \text {End}({{\mathbb {C}}}^n \otimes {{\mathbb {C}}}^n)(z)$$
R
(
z
)
∈
End
(
C
n
⊗
C
n
)
(
z
)
(see Faddeev et al. in Leningrad Math J 1:193–226, 1990). An upshot of this construction is a new topological coproduct on $${U_{q,{{\overline{q}}}}(\ddot{{\mathfrak {gl}}}_n)}$$
U
q
,
q
¯
(
gl
¨
n
)
which extends the Drinfeld–Jimbo coproduct on the horizontal subalgebra $${U_q({\dot{{\mathfrak {gl}}}}_n)}\subset {U_{q,{{\overline{q}}}}(\ddot{{\mathfrak {gl}}}_n)}$$
U
q
(
gl
˙
n
)
⊂
U
q
,
q
¯
(
gl
¨
n
)
.
Funder
Massachusetts Institute of Technology
Publisher
Springer Science and Business Media LLC
Reference18 articles.
1. Beck, J.: Braid group action and quantum affine algebras. Commun. Math. Phys. 165, 555–568 (1994)
2. Burban, I., Schiffmann, O.: On the Hall algebra of an elliptic curve, I. Duke Math. J. 161(7), 1171–1231 (2012)
3. Ding, J., Frenkel, I.: Isomorphism of two realizations of quantum affine algebra $$U_q({\widehat{{{\mathfrak{gl} }}}}_n)$$. Commun. Math. Phys. 156(2), 277–300 (1993)
4. Ding, J., Iohara, K.: Generalization of Drinfeld quantum affine algebras. Lett. Math. Phys. 41(2), 181–193 (1997)
5. Drinfeld, V.G.: A new realization of Yangians and quantized affine algebras. Soviet Math. Dokl. 36, 212–216 (1988)