Recent advances in the application of microbial diamine oxidases and other histamine-oxidizing enzymes

Author:

Kettner Lucas,Seitl Ines,Fischer Lutz

Abstract

AbstractThe consumption of foods fraught with histamine can lead to various allergy-like symptoms if the histamine is not sufficiently degraded in the human body. The degradation occurs primarily in the small intestine, naturally catalyzed by the human diamine oxidase (DAO). An inherent or acquired deficiency in human DAO function causes the accumulation of histamine and subsequent intrusion of histamine into the bloodstream. The histamine exerts its effects acting on different histamine receptors all over the body but also directly in the intestinal lumen. The inability to degrade sufficient amounts of dietary histamine is known as the ‘histamine intolerance’. It would be preferable to solve this problem initially by the production of histamine-free or -reduced foods and by the oral supplementation of exogenous DAO supporting the human DAO in the small intestine. For the latter, DAOs from mammalian, herbal and microbial sources may be applicable. Microbial DAOs seem to be the most promising choice due to their possibility of an efficient biotechnological production in suitable microbial hosts. However, their biochemical properties, such as activity and stability under process conditions and substrate selectivity, play important roles for their successful application. This review deals with the advances and challenges of DAOs and other histamine-oxidizing enzymes for their potential application as processing aids for the production of histamine-reduced foods or as orally administered adjuvants to humans who have been eating food fraught with histamine.

Funder

Universität Hohenheim

Publisher

Springer Science and Business Media LLC

Subject

Applied Microbiology and Biotechnology,General Medicine,Physiology,Biotechnology

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3