Applicability of Deep Learning to Dynamically Identify the Different Organs of the Pelvic Floor in the Midsagittal Plane

Author:

García-Mejido José AntonioORCID,Solis-Martín David,Martín-Morán Marina,Fernández-Conde Cristina,Fernández-Palacín Fernando,Sainz-Bueno José Antonio

Abstract

Abstract Introduction and Hypothesis The objective was to create and validate the usefulness of a convolutional neural network (CNN) for identifying different organs of the pelvic floor in the midsagittal plane via dynamic ultrasound. Methods This observational and prospective study included 110 patients. Transperineal ultrasound scans were performed by an expert sonographer of the pelvic floor. A video of each patient was made that captured the midsagittal plane of the pelvic floor at rest and the change in the pelvic structures during the Valsalva maneuver. After saving the captured videos, we manually labeled the different organs in each video. Three different architectures were tested—UNet, FPN, and LinkNet—to determine which CNN model best recognized anatomical structures. The best model was trained with the 86 cases for the number of epochs determined by the stop criterion via cross-validation. The Dice Similarity Index (DSI) was used for CNN validation. Results Eighty-six patients were included to train the CNN and 24 to test the CNN. After applying the trained CNN to the 24 test videos, we did not observe any failed segmentation. In fact, we obtained a DSI of 0.79 (95% CI: 0.73 – 0.82) as the median of the 24 test videos. When we studied the organs independently, we observed differences in the DSI of each organ. The poorest DSIs were obtained in the bladder (0.71 [95% CI: 0.70 – 0.73]) and uterus (0.70 [95% CI: 0.68 – 0.74]), whereas the highest DSIs were obtained in the anus (0.81 [95% CI: 0.80 – 0.86]) and levator ani muscle (0.83 [95% CI: 0.82 – 0.83]). Conclusions Our results show that it is possible to apply deep learning using a trained CNN to identify different pelvic floor organs in the midsagittal plane via dynamic ultrasound.

Funder

Universidad de Sevilla

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3