Autoencoder-enabled model portability for reducing hyperparameter tuning efforts in side-channel analysis

Author:

Krček Marina,Perin Guilherme

Abstract

AbstractHyperparameter tuning represents one of the main challenges in deep learning-based profiling side-channel analysis. For each different side-channel dataset, the typical procedure to find a profiling model is applying hyperparameter tuning from scratch. The main reason is that side-channel measurements from various targets contain different underlying leakage distributions. Consequently, the same profiling model hyperparameters are usually not equally efficient for other targets. This paper considers autoencoders for dimensionality reduction to verify if encoded datasets from different targets enable the portability of profiling models and architectures. Successful portability reduces the hyperparameter tuning efforts as profiling model tuning is eliminated for the new dataset, and tuning autoencoders is simpler. We first search for the best autoencoder for each dataset and the best profiling model when the encoded dataset becomes the training set. Our results show no significant difference in tuning efforts using original and encoded traces, meaning that encoded data reliably represents the original data. Next, we verify how portable is the best profiling model among different datasets. Our results show that tuning autoencoders enables and improves portability while reducing the effort in hyperparameter search for profiling models. Lastly, we present a transfer learning case where dimensionality reduction might be necessary if the model is tuned for a dataset with fewer features than the new dataset. In this case, tuning of the profiling model is eliminated and training time reduced.

Publisher

Springer Science and Business Media LLC

Subject

Computer Networks and Communications,Software

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3