A Deep Learning-Based Multi-objective Optimization Model for PM2.5 Prediction

Author:

Xu Wenkai,Fu FengchenORCID,Zhang Qingqing,Wang Lei

Abstract

AbstractAir pollution caused by particulate matter with a diameter of less than 2.5 μm (PM2.5) poses a serious threat to human health and the environment. Predicting PM2.5 concentrations and controlling emissions are crucial for pollution prevention and control. This study proposes a comprehensive solution based on weight-sharing deep learning and multi-objective optimization. The proposed approach first utilizes a model that combines the Convolutional Neural Network and Long Short-Term Memory Neural Network to analyze data from 13 air quality monitoring stations in Xi'an City. By simultaneously inputting data from different monitoring stations, the model can extract highly correlated spatiotemporal features, enabling accurate predictions of PM2.5 concentrations for specific monitoring stations using LSTM. In addition, a multi-objective optimization model is established with the primary goal of achieving maximum total emission reduction. This model takes into account four key factors: the total emission reduction, the task of emission reduction, the government subsidy, and the total cost of emission reduction. To obtain the emission reduction of PM2.5 concentration at 13 monitoring stations, 5 classical intelligence algorithms are employed to solve the model. Experimental results demonstrate the effectiveness of the proposed prediction model, with an average Root Mean Square Error (RMSE) of 12.820 and a fitting coefficient (R2) of 0.907, outperforming all comparison models. The proposed model exhibits strong generalization ability, making it applicable to different time and space conditions. Furthermore, it can be adapted for calculating emission reduction of other air pollutants. Lastly, the multi-objective optimization model achieves significant success in terms of total emission reduction. This study provides a new reference in the field of artificial intelligence and its application to air pollution control. The findings hold great significance for promoting public health and environmental protection.

Funder

2022XXJ-5

Publisher

Springer Science and Business Media LLC

Subject

Computational Mathematics,General Computer Science

Reference48 articles.

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3