A LDA-Based Social Media Data Mining Framework for Plastic Circular Economy

Author:

Xue YangyiminORCID,Kambhampati Chandrasekhar,Cheng Yongqiang,Mishra Nishikant,Wulandhari Nur,Deutz Pauline

Abstract

AbstractThe mass production of plastic waste has caused an urgent worldwide public health crisis. Although government policies and industrial innovation are the driving forces to meet this challenge, trying to understand public attitudes may improve the efficiency of this process. Social media has become the main ways for the public to obtain information and express opinions and feelings. This motivated us to mine the perceptions and behavioral responses towards plastic usage using social media data. In this paper, we proposed a framework for data collection and analysis based on mainstream media in the UK to obtain public opinions on plastics. An unsupervised machine learning model based on Latent Dirichlet Allocation (LDA) has been employed to analyse and cluster the topics to deal with the lack of annotation of the data contents. An additional dictionary method was then proposed to evaluate the sentiment of the comments. The framework also provides tools to visualise the model and results to stimulate insightful understandings. We validated the framework's effectiveness by applying it to analyse three mainstream social media, where 6 first-level topic categories and 13 second-level topic categories from the comment texts related to plastics have been identified. The results show that public sentiment towards plastic products is generally stable. The spatiotemporal distribution of each topic's sentiment is highly correlated with the number of occurrences.

Publisher

Springer Science and Business Media LLC

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3