Author:
Fu Siyong,Zhao Qinghua,Fan Zhen,Tao Qiuxiang,Liu Hesheng
Abstract
AbstractUnmanned vehicles need to know their location and direction information accurately to plan and navigate their paths. However, the positioning system is susceptible to interference from a variety of factors, which leads to increased positioning errors, thereby affecting the accuracy of unmanned vehicle positioning. An unmanned vehicle fusion positioning technology based on the "5G + Beidou" integrated positioning system was proposed. While using the "5G + Beidou" base station for positioning, the 3D point cloud image was fused, and the high-precision real-time positioning was carried out through the vehicle's autonomous navigation algorithm. This paper first analyzed the current situation and characteristics of GNSS technology and studied the key technologies and principles of the "5G + Beidou" integrated positioning system. Then, aiming at the difficulty of 5G base station deployment, the GNSS system parameter optimization scheme based on a multidimensional fusion structure was designed. Finally, in the experiment, it was verified that the fusion system could achieve higher precision positioning results compared with traditional single-dimensional GNSS and multi-dimensional GNSS. The technical advantages of "5G + Beidou" were used for data fusion processing of unmanned vehicles, and a positioning method based on the combination of 3D point cloud image and high-precision map was proposed. Through some experiments, it was concluded that the fusion location method could control the error below 0.1, which showed the accuracy of the fusion location.
Funder
Science and Technology Research Project of Jiangxi Education Department of China
Industry university research innovation fund of Chinese Universities
Publisher
Springer Science and Business Media LLC
Subject
Computational Mathematics,General Computer Science
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献