Influence of River Disconnection on Floodplain Periphyton Assemblages

Author:

De Gallardo KamelaORCID,Kaller Michael D.,Rutherford D. Allen,Kelso William E.

Abstract

AbstractThe Atchafalaya River Basin (ARB) in southcentral Louisiana, USA, is a structurally and biotically diverse floodplain of Atchafalaya River (AR), which is the largest distributary of the Mississippi River. Annual floodplain inundation facilitates the exchange of nutrients and organic material between the AR and its floodplain, giving rise to the high productivity of the river-floodplain system. Production within the ARB is driven by periphytic algae, phytoplankton, and aquatic macrophytes, however, very little is known about periphytic algal assemblages in floodplain systems or how loss of annual flooding impacts these assemblages. In this study, we use artificial substrates to sample periphytic algae bi-weekly (January 2019 – September 2019) from ARB sites with active river connections and from a permanently-isolated floodplain system (Lake Verret). Our results showed that connection to the river caused spatiotemporal shifts in periphytic algal assemblages in the ARB. Overall, ARB sites had a higher density of algal cells compared with non-ARB sites, and for ARB sites with more active river connections, total algal density was greater nearer to river inputs, particularly for cyanobacteria and centric diatoms, with diatoms dominating periphyton assemblages year-round. In contrast, the river-isolated system was dominated largely by chlorophytes. In both isolated and connected systems, sites with heavy macrophyte cover showed increased densities of euglenoids, chrysophytes, and xanthophytes. Shifts in periphytic algal assemblages due to floodplain alterations, such as the disconnection of a floodplain from its river source, could impact higher trophic levels and should be considered in future wetland management decisions.

Funder

U.S. Army Corps of Engineers

Publisher

Springer Science and Business Media LLC

Subject

General Environmental Science,Ecology,Environmental Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3