Assessing Nutrient Assimilation by Wetland Impoundments Across Environmental Gradients

Author:

Wood Rachel L.ORCID,Baker Michelle A.

Abstract

AbstractWetland impoundments are constructed for recreational and conservational purposes. Here, the water level can be carefully controlled, producing ideal conditions for aquatic plant growth to support migratory birds or other management goals. These wetlands also perform a critical function of nutrient assimilation, with the capability to protect downstream waters from eutrophication. Understanding how the structural characteristics of wetlands are related to this functional capacity within shallow impoundments will help inform management practices to improve overall wetland function. We characterized 18 waterfowl impoundments surrounding the Great Salt Lake, Utah, USA. Wetland assimilation of nitrogen (N) and phosphorus (P) was estimated at each wetland by controlled nutrient addition within mesocosms. In addition, wetland condition was assessed using a multimetric index (MMI), an indicator of the biological quality of the wetlands. We found that N assimilation was inversely correlated with water depth and positively correlated with soil % clay and total iron. Phosphorus assimilation was related to dissolved oxygen, aluminum, and N and P concentrations within the water column and soil. Nutrient assimilation did not differ among wetlands rated as poor, fair, and good by the MMI.

Funder

U.S. Environmental Protection Agency

Publisher

Springer Science and Business Media LLC

Subject

General Environmental Science,Ecology,Environmental Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3