1. Darwish, A., Hassanien, A.E., Das, S.: A survey of swarm and evolutionary computing approaches for deep learning. Artif. Intell. Rev., 1–46 (2019)
2. Iba, H., Noman, N.: New Frontier in Evolutionary Algorithms: Theory and applications. Imperial College Press, London (2011)
3. Schaffer, J.D., Whitley, D., Eshelman, L.J.: Combinations of genetic algorithms and neural networks: a survey of the state of the art. In: International Workshop on Combinations of Genetic Algorithms and Neural Networks, 1992. OGANN-92, pp. 1–37. IEEE, Piscataway (1992)
4. Such, F.P., Madhavan, V., Conti, E., Lehman, J., Stanley, K.O., Clune, J.: Deep Neuroevolution: genetic algorithms are a competitive alternative for training deep neural networks for reinforcement learning. Preprint. arXiv:1712.06567 (2017)
5. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. Preprint. arXiv:1409.1556 (2014)