1. Berthelot, D., Carlini, N., Goodfellow, I., Papernot, N., Oliver, A., Raffel, C.A.: MixMatch: a holistic approach to semi-supervised learning. In: Advances in Neural Information Processing Systems, pp. 5050–5060 (2019)
2. Chapelle, O., Chi, M., Zien, A.: A continuation method for semi-supervised SVMs. In: Proceedings of International Conference on Machine Learning, pp. 185–192 (2006)
3. Chen, T., Kornblith, S., Norouzi, M., Hinton, G.: A simple framework for contrastive learning of visual representations. In: International Conference on Machine Learning, pp. 1597–1607 (2020)
4. Cubuk, E.D., Zoph, B., Shlens, J., Le, Q.V.: RandAugment: practical automated data augmentation with a reduced search space. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, pp. 702–703 (2020)
5. Dai, Z., Cai, B., Chen, J.: UniMoCo: unsupervised, semi-supervised and fully-supervised visual representation learning. In: IEEE International Conference on Systems, pp. 3099–3106 (2022)