Author:
Vallurupalli Sai Prudhvi,Anuradha T.
Publisher
Springer Nature Singapore
Reference23 articles.
1. Ma Y, Luo Y Bone fracture detection through the two-stage system of crack-sensitive, convolutional neural network. University of Science and Technology of China, Hefei, 230026, PR China
2. Wang X, Xu Z, Tong Y, Xia L, Jie B, Ding P, Bai H, Zhang Y, He Y (2022) Detection and classification of mandibular fracture on CT scan using deep convolutional neural network. Clin Oral Investig 26:4593–4601
3. Tanzi L, Vezzetti E, Moreno R, Moos S (2020) X-ray bone fracture classification using deep learning: a baseline for designing a reliable approach. Department of Management and Production Engineering, Politecnico di Torino, 10129 Torino, Italy; enrico.vezzetti@polito.it (E.V.); sandro.moos@polito.it (S.M.), 31 January 2020; Accepted: 20 February 2020; Published: 22 February 2020
4. Jacobs IS, Bean CP (1963) Fine particles, thin films and exchange anisotropy. In: Rado GT, Suhl H (eds) Magnetism, vol III. Academic, New York, pp 271–350
5. Shin HC, Roth HR, Gao M et al (2016) Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset characteristics and transfer learning. IEEE Trans Med Imaging 35(5):1285–1298