Binary Segmentation of Malaria Parasites Using U-Net Segmentation Approach: A Case of Rwanda

Author:

Akpo Eugenia M.,Mukamakuza Carine P.,Tuyishimire Emmanuel

Abstract

AbstractMalaria is a significant health issue in Rwanda. Its accurate identification is essential for effective treatment. Traditional methods, such as microscopy, often face limitations in these contexts. This paper investigates how advanced machine learning techniques can address diagnostic challenges commonly encountered in resource-limited settings like Rwanda. A powerful deep learning framework known as U-Net was utilized in this study to identify different types of malaria. This method demonstrated the ability to accurately identify the disease at a highly detailed level, yielding promising results. The findings from this study could contribute to the development of computer-aided diagnostic tools specifically designed for regions with limited resources. These tools could assist healthcare professionals in decision-making processes and enhance patient outcomes.

Publisher

Springer Nature Singapore

Reference28 articles.

1. Commonwealth leaders take action in response to the Kigali Summit’s call for bold commitments towards ending Malaria and Neglected Tropical Diseases (NTDs) | RBM Partnership to End Malaria. https://endmalaria.org/news/commonwealth-leaders-take-action-response-kigali-summit%E2%80%99s-call-bold-commitments-towards-ending

2. Shewajo FA, Fante KA (2023) Tile-based microscopic image processing for malaria screening using a deep learning approach. BMC Med Imaging 23(1):39

3. Fact sheet about malaria. https://www.who.int/news-room/fact-sheets/detail/malaria

4. Iqbal J, Hira P, Al-Ali F, Khalid N, Sher A (2003) Modified Giemsa staining for rapid diagnosis of Malaria infection. Med Principles Pract 12(3):156–159

5. Krishnadas P, Chadaga K, Sampathila N, Rao S, Prabhu S (2022) Classification of Malaria using object detection models. Informatics 9(4):76. https://doi.org/10.3390/informatics9040076, https://www.mdpi.com/2227-9709/9/4/76. Number: 4 Publisher: Multidisciplinary Digital Publishing Institute

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3