1. Obaidullah, S.M., Halder, C., Santosh, K.C., Das, N., Roy, K.: PHDIndic\_11: page-level handwritten document image dataset of 11 official Indic scripts for script identification. Multimed. Tools Appl. 77(2), 1643–1678 (2017). https://doi.org/10.1007/s11042-017-4373-y
2. Obaidullah, S.M., Santosh, K.C., Halder, C., Das, N., Roy, K.: Automatic Indic script identification from handwritten documents: page, block, line and word-level approach. Int. J. Mach. Learn. Cybern. 10(1), 87–106 (2017). https://doi.org/10.1007/s13042-017-0702-8
3. Obaidullah, S.M., Santosh, K.C., Das, N., Halder, C., Roy, K.: Handwritten Indic script identification in multi-script document images: a survey. Int. J. Pattern Recognit. Artif. Intell. 32(10), 1856012 (2018)
4. Choudhary A., Rishi, R., Ahlawat, S: A new character segmentation approach for off-line cursive handwritten words. Proc. Comput. Sci. 17, 88–95 (2013)
5. Kumar, M., Jindal, M.K., Sharma, R.K.: Segmentation of isolated and touching characters in offline handwritten Gurmukhi script recognition. Int. J. Inf. Technol. Comput. Sci. 6(2), 58–63 (2014)