Publisher
Springer Nature Singapore
Reference19 articles.
1. Cao, J., Lin, L., Ma, R., Guan, H., Tian, M., Wang, Y.: An efficient deep learning approach to IoT intrusion detection. Comput. J. 65(11), 2870–2879 (2022)
2. Casas, P., Mazel, J., Owezarski, P.: Unsupervised network intrusion detection systems: detecting the unknown without knowledge. Comput. Commun. 35(7), 772–783 (2012)
3. Caville, E., Lo, W.W., Layeghy, S., Portmann, M.: Anomal-e: a self-supervised network intrusion detection system based on graph neural networks. Knowl.- Based Syst. 258, 110030 (2022)
4. Chen, T., Kornblith, S., Norouzi, M., Hinton, G.: A simple framework for contrastive learning of visual representations. In: International Conference on Machine Learning, pp. 1597–1607. PMLR (2020)
5. Claise, B.: Cisco Systems NetFlow Services Export Version 9. RFC 3954, October 2004. https://doi.org/10.17487/RFC3954, https://www.rfceditor.org/info/rfc3954