Author:
Pal Ratnabali,Kar Samarjit,Sekh Arif Ahmed
Publisher
Springer Nature Singapore
Reference65 articles.
1. Bankhead P, Loughrey MB, Fernández J, Dombrowski Y, McArt DG, Dunne PD, McQuaid S, Gray RT, Murray LJ, Coleman HG et al (2017) Qupath: open source software for digital pathology image analysis. Sci Rep 7(1):1–7
2. Alom MZ, Aspiras T, Taha TM, Asari VK, Bowen TJ, Billiter D, Arkell S (2019) Advanced deep convolutional neural network approaches for digital pathology image analysis: a comprehensive evaluation with different use cases. arXiv preprint arXiv:1904.09075
3. Cruz-Roa A, Gilmore H, Basavanhally A, Feldman M, Ganesan S, Shih NNC, Tomaszewski J, González FA, Madabhushi A (2017) Accurate and reproducible invasive breast cancer detection in whole-slide images: a deep learning approach for quantifying tumor extent. Sci Rep 7:46450
4. Jansen C, Schilling B, Strohmenger K, Witt M, Annuscheit J, Krefting D (2019) Reproducibility and performance of deep learning applications for cancer detection in pathological images. In: 2019 19th IEEE/ACM international symposium on cluster, cloud and grid computing (CCGRID). IEEE, pp 621–630
5. Echle A, Rindtorff NT, Brinker TJ, Luedde T, Pearson AT, Kather JN (2020) Deep learning in cancer pathology: a new generation of clinical biomarkers. Br J Cancer, 1–11
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献