Author:
Li Binbin,Tang Xiangyan,Ruan Chengchun,Fu Cebin,Tao Zhicong,Yang Yue
Publisher
Springer Nature Singapore
Reference46 articles.
1. Adam, J.M., et al.: Deep learning-based semantic segmentation of urban-scale 3d meshes in remote sensing: a survey. Int. J. Appl. Earth Obs. Geoinf. 121, 103365 (2023)
2. Brostow, G.J., Fauqueur, J., Cipolla, R.: Semantic object classes in video: a high-definition ground truth database. Pattern Recogn. Lett. 30(2), 88–97 (2009)
3. Chen, L.C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L.: DeepLab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected CRFs. IEEE Trans. Pattern Anal. Mach. Intell. 40(4), 834–848 (2017)
4. Chen, L.C., Papandreou, G., Schroff, F., Adam, H.: Rethinking atrous convolution for semantic image segmentation, 2. arxiv 2017. arXiv preprint arXiv:1706.05587 (2019)
5. Lecture Notes in Computer Science;L-C Chen,2018