Detection and Classification of Power Quality Disturbances Using Variational Mode Decomposition and Deep Learning Networks
Author:
Publisher
Springer Nature Singapore
Link
https://link.springer.com/content/pdf/10.1007/978-981-99-4795-9_1
Reference17 articles.
1. Jamali S, Farsa AR, Ghaffarzadeh N (2018) Identification of optimal features for fast and accurate classification of power quality disturbances. Meas. J. Int. Meas. Confed 116(November 2016):565–574. https://doi.org/10.1016/j.measurement.2017.10.034
2. Heydt GT, Fjeld PS, Liu CC, Pierce D, Tu L, Hensley G (1999) Applications of the windowed FFT to electric power quality assessment. IEEE Trans Power Deliv 14(4):1411–1416. https://doi.org/10.1109/61.796235
3. Masoum MAS, Jamali S, Ghaffarzadeh N (2010) Detection and classification of power quality disturbances using discrete wavelet transform and wavelet networks. IET Sci Meas Technol 4(4):193–205. https://doi.org/10.1049/iet-smt.2009.0006
4. Cai K, Cao W, Aarniovuori L, Pang H, Lin Y, Li G (2019) Classification of power quality disturbances using Wigner-Ville distribution and deep convolutional neural networks. IEEE Access 7:119099–119109. https://doi.org/10.1109/ACCESS.2019.2937193
5. Senthil Vadivu U, Keshavan BK (2017) Power quality enhancement of UPQC connected WECS using FFA with RNN. In: Conference proceedings-2017 17th IEEE international conference on environment and electrical engineering and 2017 1st IEEE industrial and commercial power systems Europe, EEEIC/I and CPS Europe 2 2017, no 1. https://doi.org/10.1109/EEEIC.2017.7977566
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3