Publisher
Springer Nature Singapore
Reference32 articles.
1. Abdullah, F.S., Abd Manan, N.S., Ahmad, A., Wafa, S.W., Shahril, M.R., Zulaily, N., Amin, R.M., Ahmed, A.: Data mining techniques for classification of childhood obesity among year 6 school children. In: International Conference on Soft Computing and Data Mining, pp. 465–474. Springer, Berlin (2016)
2. Adnan, M.H., Husain, W., Rashid, N.A., Hassan, M.F.: Preliminary analysis to investigate accuracy of data mining for childhood obesity and overweight predictions. Adv. Sci. Lett. 24(10), 7529–7533 (2018)
3. Almandoz, J.P., Xie, L., Schellinger, J.N., Mathew, M.S., Bismar, N., Ofori, A., Kukreja, S., Schneider, B., Vidot, D., Messiah, S.E.: Substance use, mental health and weight-related behaviours during the covid-19 pandemic in people with obesity. Clin. Obes. 11(2), e12440 (2021)
4. Avila, C., Holloway, A.C., Hahn, M.K., Morrison, K.M., Restivo, M., Anglin, R., Taylor, V.H.: An overview of links between obesity and mental health. Curr. Obes. Rep. 4(3), 303–310 (2015)
5. Brownlee, J.: A gentle introduction to imbalanced classification (Jan 2020). https://machinelearningmastery.com/what-is-imbalanced-classification/