Author:
Lu Lifeng,Zhang Yanhua,Si Zhanjun,Dou Zhuangzhuang
Publisher
Springer Nature Singapore
Reference9 articles.
1. Hsieh, R.-J., Chou, J., Ho, C.-H.: Unsupervised online anomaly detection on multivariate sensing time series data for smart manufacturing. In: 2019 IEEE 12th Conference on Service-Oriented Computing and Applications (SOCA), pp. 90–97. IEEE (2019)
2. Lughofer, E., et al.: On-line anomaly detection with advanced independent component analysis of multivariate residual signals from causal relation networks. Inf. Sci. (2020)
3. Chandola, V., Zong, B.: Time series anomaly detection: a survey. Data Min. Knowl. Discov. 34(1), 1–54 (2020)
4. Chen, T., Liu, X., Xia, B., Wang, W., Lai, Y.: Unsupervised anomaly detection of industrial robots using sliding-window convolutional variational autoencoder. IEEE Access (2020)
5. Sarda, K., et al.: A multi-step anomaly detection strategy based on robust distance. In: Federal Reserve Bank of Cleveland, Working Paper No. 21-08 (2021)