1. Jiang, L., Yin, H., Li, X., et al.: Fault diagnosis of rotating machinery based on multisensor information fusion using SVM and time-domain features. Shock Vib. 67(8), 1887–1899 (2014)
2. Hamed, H., Ahmad, F.: Rolling bearing fault detection of electric motor using time domain and frequency domain features extraction and ANFIS. IET Electr. Power Appl. 13(5), 662–669 (2019)
3. He, M., He, D.: Deep learning based approach for bearing fault diagnosis. IEEE Trans. Ind. Appl. 53(3), 3057–3065 (2017)
4. Chen, J., Li, Z., Pan.: Wavelet transform based on inner product in fault diagnosis of rotating machinery: A review. Mech. Syst. Signal Process. (70–71), 1–35 (2016)
5. Elbouchikhi, E., Choqueuse, V., Amirat, Y., et al.: An efficient Hilbert-Huang transform-based bearing faults detection in induction machines. IEEE Trans. Energy Convers. 32(2), 401–413 (2017)