Optimizing Performance of Image Processing Algorithms on GPUs

Author:

Zhou Honghui,Qin Ruyi,Liu Zihan,Qian Ying,Ju Xiaoming

Abstract

AbstractThe application of machine learning algorithms in the field of power grid improves the service level of power enterprises and promotes the development of power grid. NVIDIA Volta and Turing GPUs powered by Tensor Cores can accelerate training and learning performance for these algorithms. With Tensor Cores enabled, FP32 and FP16 mixed precision matrix multiplication dramatically accelerates the throughput and reduces AI training times. In order to explore the cause of this phenomenon, we choose a convolutional neural network (CNN), which is widely used in computer vision, as an example and show the performance characteristics with tensor core on general matrix multiplications and convolution calculations as benchmark. Building a CNN based on cuDNN and TensorFlow, we analyze the performance of CNN from various aspects and optimize performance of it by changing the shape of convolution kernel and using texture memory, etc. The experimental results prove the effectiveness of our methods.

Publisher

Springer Nature Singapore

Reference23 articles.

1. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105 (2012)

2. Abdel-Hamid, O., Mohamed, A., Jiang, H., et al.: Convolutional neural networks for speech recognition. IEEE/ACM Trans. Audio Speech Lang. Process. 22(10), 1533–1545 (2014)

3. Conneau, A., Schwenk, H., Barrault, L., et al.: Very deep convolutional networks for natural language processing. arXiv preprint arXiv:1606.01781, February 2016

4. Segler, M.H.S., Kogej, T., Tyrchan, C., et al.: Generating focused molecule libraries for drug discovery with recurrent neural networks. ACS Cent. Sci. 4(1), 120–131 (2017)

5. NVIDIA: Nvidia turing architecture whitepaper. Technical report, NVIDIA Corp., August 2018. https://www.nvidia.com/content/dam/en-zz/Solutions/design-visualization/technologies/turing-architecture/NVIDIA-Turing-Architecture-Whitepaper.pdf

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3