Analysis of Breast Cancer Detection Using Different Machine Learning Techniques

Author:

Mohammed Siham A.,Darrab Sadeq,Noaman Salah A.,Saake Gunter

Publisher

Springer Singapore

Reference21 articles.

1. U.S. Cancer Statistics Working Group. United States Cancer Statistics: 1999–2008 Incidence and Mortality Web-based Report. Atlanta (GA): Department of Health and Human Services, Centers for Disease Control

2. http://www.breastcancer.org/symptoms/understand_bc/statistics

3. Lecture Notes in Computer Science;J Silva,2019

4. Ojha U., Goel, S.: A study on prediction of breast cancer recurrence using data mining techniques. In: 7th International Conference on Cloud Computing, Data Science & Engineering-Confluence, IEEE, pp. 527–530, 2017

5. Pritom, A.I., Munshi, M.A.R., Sabab, S.A., Shihab, S.: Predicting breast cancer recurrence using effective classification and feature selection technique. In: 19th International Conference on Computer and Information Technology (ICCIT), pp. 310–314. IEEE (2016)

Cited by 70 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Genetically Optimized Cyber- Physical System (CPS) for Breast Cancer Identification using an LS-SVM Classifier;Wireless Personal Communications;2024-06-10

2. Breast cancer diagnosis using support vector machine optimized by improved quantum inspired grey wolf optimization;Scientific Reports;2024-05-10

3. Improving Breast Cancer Diagnosis: Insights From Machine Learning Models;2024 International Conference on Communication, Computer Sciences and Engineering (IC3SE);2024-05-09

4. Breast Cancer Classification with ANN and DBN;2024 2nd International Conference on Advancement in Computation & Computer Technologies (InCACCT);2024-05-02

5. Advancements in Breast Cancer Diagnosis: Integrating Classifier Algorithms, Neural Network and Ensemble Learning with PCA, VIF for Feature Selection and Dimensionality Reduction;2024 6th International Conference on Electrical Engineering and Information & Communication Technology (ICEEICT);2024-05-02

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3