Neural Networks-Based Immune Optimization Regulation Using Adaptive Dynamic Programming

Author:

Sun Jiayue,Xu Shun,Liu Yang,Zhang Huaguang

Abstract

AbstractThis chapter investigates optimal regulation scheme between tumor and immune cells based on ADP approach. The therapeutic goal is to inhibit the growth of tumor cells to allowable injury degree, and maximize the number of immune cells in the meantime. The reliable controller is derived through the ADP approach to make the number of cells achieve the specific ideal states. Firstly, the main objective is to weaken the negative effect caused by chemotherapy and immunotherapy, which means that minimal dose of chemotherapeutic and immunotherapeutic drugs can be operational in the treatment process. Secondly, according to nonlinear dynamical mathematical model of tumor cells, chemotherapy and immunotherapeutic drugs can act as powerful regulatory measures, which is a closed-loop control behavior. Finally, states of the system and critic weight errors are proved to be ultimately uniformly bounded with the appropriate optimization control strategy and the simulation results are shown to demonstrate effectiveness of the cybernetics methodology.

Publisher

Springer Nature Singapore

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3