Computer-Aided Detection and Diagnosis of Lung Nodules Using CT Scan Images: An Analytical Review
Author:
Ali NikhatORCID, Yadav JyotsnaORCID
Publisher
Springer Singapore
Reference55 articles.
1. WHO Report on Cancer, Setting Priorities, Investing Wisely and Providing Care for All,World Health Organization, Geneva, Switzerland. (2020). 2. Ozdemir, O., Russell, R. L., & Berlin, A. A. (2020). A 3D probabilistic deep learning system for detection and diagnosis of lung cancer using low-dose CT scans. IEEE Transactions on Medical Imaging, 39(5), 1419–1429. https://doi.org/10.1109/TMI.2019.2947595 3. Siegel, R. L., Miller, K. D., & Jemal, A. (2020). Cancer statistics, 2020. Cancer Journal for Clinicians, 70(1), 7–30. https://doi.org/10.3322/caac.21590 4. De Koning, H. J. (2020). Reduced lung-cancer mortality with volume CT screening in a randomized trial. New England Journal of. Medicine, 382(6), 503–513. https://doi.org/10.1056/nejmoa1911793 5. Snoeckx, A., Reyntiens, P., Desbuquoit, D., Spinhoven, M. J., Van Schil, P. E., Meerbeeck, J. P., & Parizel, P. M. (2018). Evaluation of the solitary pulmonary nodule: Size matters, but do not ignore the power of morphology. Insights into Imaging, 9(1), 73–86.
|
|