Publisher
Springer Nature Singapore
Reference15 articles.
1. A.L. van Ommeren, L. Sawaryn, B. Prange-Lasonder, G.B. Buurke, J.H. Rietman, J.S. Velt, AinkPH.detection of the intention to grasp during reaching in stroke using inertial. IEEE Trans. Neural Syst. Rehabil. Eng. 27(10), 2128–2134 (2019)
2. T.J.C. deVries, A.L. van Ommeren, G.B. Prange-Lasonder, J.S. Rietman, P.H. Veltink, Detection of the intention to grasp during reach movements. J. Rehabil. Assistive Technol. Eng. 5, 2055668317752850 (2018)
3. C. Della, V. Arapi, G. Averta, F. Damiani, G. Fiore, A. Settimi, M.G. Catalano, D. Bacciu, A. Bicchi, M. Bianchi, Learning from humans how to grasp: a data-driven architecture for autonomous grasping with anthropomorphic soft hands. IEEE Robot. Auto. Lett. 4(2), 1533–1540 (2019)
4. B. Leon, A. Basteris, F. Amirabdollahian, Comparing recognition methods to identify different types of grasp for hand rehabilitation, in Proceedings of the 7th International Conference on Advances in Computer-Human Interactions (ACHI ‘14) (Barcelona, Spain, 2014), pp. 109–114
5. M. Gandolla et al., Artificial neural network EMG classifier for functional hand grasp movements prediction. J. Int. Med. Res. 45(6), 1831–1847 (2017)