1. Baker, J.E.: Reducing bias and inefficiency in the selection algorithm. In: Grefenstette, J.J. (ed.) Proceedings of the Second International Conference on Genetic Algorithms and their Application, pp. 14–21. Lawrence Erlbaum Associates, Cambridge, MA, USA (1987)
2. Blickle, T.: Theory of evolutionary algorithms and application to system synthesis. Ph.D. thesis, Swiss Federal Institute of Technology, Zurich, Switzerland (1996). http://dx.doi.org/10.3929/ethz-a-001710359
3. de Melo, V.V., Fazenda, A.L., Sotto, L.F.D.P., Iacca, G.: A MIMD interpreter for genetic programming. In: Castillo, P.A., Jimenez Laredo, J.L., Fernandez de Vega, F. (eds.) 23rd International Conference, EvoApplications 2020, LNCS, vol. 12104, pp. 645–658. Springer, Seville, Spain (2020). URL http://dx.doi.org/10.1007/978-3-030-43722-0_41
4. Goldberg, D.E.: Genetic Algorithms in Search Optimization and Machine Learning. Addison-Wesley (1989)
5. Guizzo, G., Petke, J., Sarro, F., Harman, M.: Enhancing genetic improvement of software with regression test selection. In: van Deursen, A., Xie, T., Dieste, N.J.O. (eds.) Proceedings of the International Conference on Software Engineering, ICSE 2021. IEEE (2021). http://dx.doi.org/10.1109/ICSE43902.2021.00120. Winner ACM SIGSOFT Distinguished Artifact Award