1. Cao, K., Wei, C., Gaidon, A., Arechiga, N., Ma, T.: Learning imbalanced datasets with label-distribution-aware margin loss. In: NeurIPS (2019)
2. Chen, T., Kornblith, S., Norouzi, M., Hinton, G.: A simple framework for contrastive learning of visual representations. In: ICML, pp. 1597–1607 (2020)
3. Chen, X., et al.: Area: adaptive reweighting via effective area for long-tailed classification. In: ICCV (2023)
4. Chen, X., et al.: Imagine by reasoning: a reasoning-based implicit semantic data augmentation for long-tailed classification. In: AAAI, pp. 356–364 (2022)
5. Cubuk, E.D., Zoph, B., Shlens, J., Le, Q.V.: Randaugment: practical automated data augmentation with a reduced search space. In: CVPR, pp. 702–703 (2020)