Author:
Arockia Dhanraj Joshuva,Prabhakar Meenakshi,Ramaian Christu Paul,Subramaniam Mohankumar,Solomon Jenoris Muthiya,Vinayagam Nadanakumar
Publisher
Springer Nature Singapore
Reference32 articles.
1. Joshuva, A., Sugumaran, V.: Fault diagnostic methods for wind turbine: a review. ARPN J. Eng. Appl. Sci. 11(7), 4654–4668 (2016)
2. Dolinski, L., Krawczuk, M.: Analysis of modal parameters using a statistical approach for condition monitoring of the wind turbine blade. Appl. Sci. 10(17), 5878 (2020)
3. Ahmad, T., Chen, H.: A review on machine learning forecasting growth trends and their real-time applications in different energy systems. Sustain. Cities Soc. 54, 102010 (2020)
4. Joshuva, A., Aslesh, A.K., Sugumaran, V.: State of the art of structural health monitoring of wind turbines. Int. J. Mech. Prod. Eng. Res. Dev. 9, 95–112 (2019)
5. Jiménez, A.A., Zhang, L., Muñoz, C.Q.G., Márquez, F.P.G.: Maintenance management based on machine learning and nonlinear features in wind turbines. Renew. Energy 146, 316–328 (2020)