A Machine Learning Approach for Honey Adulteration Detection Using Mineral Element Profiles
Author:
Publisher
Springer Nature Singapore
Link
https://link.springer.com/content/pdf/10.1007/978-981-19-7892-0_29
Reference18 articles.
1. Al-Awadhi MA, Deshmukh RR (2021) A review on modern analytical methods for detecting and quantifying adulteration in honey. In: 2021 international conference of modern trends in information and communication technology industry (MTICTI), pp 1–6. IEEE. https://doi.org/10.1109/mticti53925.2021.9664767
2. Tosun M (2013) Detection of adulteration in honey samples added various sugar syrups with 13C/12C isotope ratio analysis method. Food Chem 138:1629–1632. https://doi.org/10.1016/j.foodchem.2012.11.068
3. Islam MK, Sostaric T, Lim LY, Hammer K, Locher C (2020) Sugar profiling of honeys for authentication and detection of adulterants using high-performance thin layer chromatography. Molecules (Basel, Switzerland) 25. https://doi.org/10.3390/molecules25225289
4. Al-Mahasneh M, Al-U’Datt M, Rababah T, Al-Widyan M, Abu Kaeed A, Al-Mahasneh AJ, Abu-Khalaf N (2021) Classification and prediction of bee honey indirect adulteration using physiochemical properties coupled with k-means clustering and simulated annealing-artificial neural networks (SA-ANNs). J Food Qual. https://doi.org/10.1155/2021/6634598
5. Song X, She S, Xin M, Chen L, Li Y, Heyden YV, Rogers KM, Chen L (2020) Detection of adulteration in Chinese monofloral honey using 1H nuclear magnetic resonance and chemometrics. J Food Compos Anal 86. https://doi.org/10.1016/j.jfca.2019.103390
Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Detection and Identification of Honey Pollens by YOLOv7: A Novel Framework toward Honey Authenticity;ACS Agricultural Science & Technology;2024-07-03
2. Fast and Efficient Prediction of Honey Adulteration using Hyperspectral Imaging and Machine Learning Models;JOURNAL OF ADVANCED APPLIED SCIENTIFIC RESEARCH;2024-05-30
1.学者识别学者识别
2.学术分析学术分析
3.人才评估人才评估
"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370
www.globalauthorid.com
TOP
Copyright © 2019-2024 北京同舟云网络信息技术有限公司 京公网安备11010802033243号 京ICP备18003416号-3