Research on Process Diagnosis of Severe Accidents Based on Deep Learning and Probabilistic Safety Analysis

Author:

Liu Zheng,Wang Hao

Abstract

AbstractSevere accident process diagnosis provides data basis for severe accident prognosis, positive and negative effect evaluation of Severe Accident Management Guidelines (SAMGs), especially to quickly diagnose Plant Damage State (PDS) for operators in the main control room or personnel in the Technical Support Center (TSC) based on historic data of the limited number of instruments during the operation transition from Emergency Operation Procedures (EOPs) to SAMGs. This diagnosis methodology is based on tens of thousands of simulations of severe accidents using the integrated analysis program MAAP. The simulation process is organized in reference to Level 1 Probabilistic Safety Analysis (L1 PSA) and EOPs. According to L1 PSA, the initial event of accidents and scenarios from the initial event to core damage are presented in Event Trees (ET), which include operator actions following up EOPs. During simulation, the time uncertainty of operations in scenarios is considered. Besides the big data collection of simulations, a deep learning algorithm, Convolutional Neural Network (CNN), has been used in this severe accident diagnosis methodology, to diagnose the type of severe accident initiation event, the breach size, breach location, and occurrence time of the initial event of LOCA, and action time by operators following up EOPs intending to take Nuclear Power Plant (NPP) back to safety state. These algorithms train classification and regression models with ET-based numerical simulations, such as the classification model of sequence number, break location, and regression model of the break size and occurrence time of initial event MBLOCA. Then these trained models take advantage of historic data from instruments in NPP to generate a diagnosis conclusion, which is automatically written into an input deck file of MAAP. This input deck originated from previous traceback efforts and provides a numerical analysis basis for predicting the follow-up process of a severe accident, which is conducive to severe accident management. Results of this paper show a theoretical possibility that under limited available instruments, this traceback and diagnosis method can automatically and quickly diagnose PDS when operation transit from EOPs to SAMGs and provide numerical analysis basis for severe accident process prognosis.

Publisher

Springer Nature Singapore

Reference16 articles.

1. Safety of nuclear power plants: Design. International Atomic Energy Agency, Vienna (2016)

2. Accident management programmes in nuclear power plants. International Atomic Energy Agency, Vienna n.d.

3. Implementation of accident management programmes in nuclear power plants. International Atomic Energy Agency, Vienna (2004)

4. Accident management insights after the Fukushima Daiichi NPP accident report of the CNRA task group on accident management, p. 72 (2014)

5. Th, S.: Informing severe accident management guidance and actions for nuclear power plants through analytical simulation n.d.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3