1. Belkin, M., Hsu, D., Xu, J.: Two models of double descent for weak features. SIAM J. Math. Data Sci. 2(4), 1167–1180 (2020)
2. Bibas, K., Fogel, Y., Feder, M.: A new look at an old problem: A universal learning approach to linear regression. In: 2019 IEEE International Symposium on Information Theory (ISIT), pp. 2304–2308 (2019)
3. Breusch, T.S., Pagan, A.R.: A simple test for heteroscedasticity and random coefficient variation. Econometrica J. Economet. Soc. 47(5), 1287–1294 (1979)
4. Dereziński, M., Liang, F., Mahoney, M.W.: Exact expressions for double descent and implicit regularization via surrogate random design. In: Conference on Neural Information Processing Systems (NeurIPS 2020), Vancouver, Canada, pp 1–26 (2020)
5. Van Ban, D., Tuan, T.C., Van Thang, D.: The fuzzy object dependences based on semantic approximation by the hedge algebraic approach. J. Inform. Cybern. 29(1), 66–78 (2013)