Structure, Composition, and Physicochemical Properties of Radiocesium-Bearing Microparticles Emitted by the Fukushima Daiichi Nuclear Power Plant Accident

Author:

Okumura Taiga,Yamaguchi Noriko,Kogure Toshihiro

Abstract

AbstractDuring the accident at TEPCO’s Fukushima Daiichi Nuclear Power Plant, radiocesium-bearing microparticles (CsMPs) were released from damaged reactors into the environment. These micron-sized spherical particles with high specific radioactivity have not been reported in previous nuclear accidents. Herein, the current understanding of the structure, composition, and physicochemical properties of CsMPs is summarized. Electron microscopy revealed that the CsMP matrix is composed of silicate glass containing Na, Cl, K, Fe, Zn, Rb, Sn, and Cs as major constituents. These elements are often inhomogeneously distributed, depending on the particle radius, and Cs was concentrated around the outer side of the particles. In addition, nanocrystals including Cr-rich oxides and chalcogenides were frequently found inside CsMPs. The average valence state of Fe in the CsMP glass matrix was almost Fe2+, indicating formation under a reducing atmosphere through condensation from the gas phase. Radiocesium diffused away from the CsMPs when heated to >600 °C. Accordingly, CsMPs may lose their high specific radioactivity when related radiation-contaminated waste is incinerated at sufficiently high temperatures. Although CsMP solubility is low, they cannot be regarded as “insoluble” materials owing to their small size. CsMP dissolution rates depend on the pH and dissolved species in the solution, and their dissolution behavior is comparable to that of silica-rich glass. Based on these dissolution properties, a method for estimating CsMP abundance and spatial distribution in the environment was proposed. The findings detailed herein contribute to the comprehensive elucidation of CsMP environmental dynamics.

Publisher

Springer Nature Singapore

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3