1. Littlestone, N.: Learning quickly when irrelevant attributes abound: a new linear-threshold algorithm. Mach. Learn. 2(4), 285–318 (1988)
2. Street, W.N., Kim, Y.S.: A streaming ensemble algorithm (SEA) for large-scale classification. In: Proceedings of the Seventh ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 377–382. ACM (2001)
3. Klinkenberg, R., Joachims, T.: Detecting concept drift with support vector machines. In: ICML, pp. 487–494 (2000)
4. Domingos, P., Hulten, G.: Mining high-speed data streams. In: KDD, vol. 2, p. 4 (2000)
5. Kolter, J.Z., Maloof, M.A.: Dynamic weighted majority: a new ensemble method for tracking concept drift. In: Third IEEE International Conference on Data Mining, pp. 123–130. IEEE (2003)