1. Balasubramanian, K., Lebanon, G.: The landmark selection method for multiple output prediction. In: International Conference on Machine Learning, pp. 283–290 (2012)
2. Barezi, E.J., Wood, I.D., Fung, P., Rabiee, H.R.: A submodular feature-aware framework for label subset selection in extreme classification problems. In: Proceedings of the 2019 Conference of the North, pp. 1009–1018 (2019)
3. Belohlavek, R., Outrata, J., Trnecka, M.: Toward quality assessment of boolean matrix factorizations. Inf. Sci. 459, 71–85 (2018)
4. Bhatia, K., Jain, H., Kar, P., Varma, M., Jain, P.: Sparse local embeddings for extreme multi-label classification. In: Neural Information Processing Systems, pp. 730–738 (2015)
5. Bi, W., Kwok, J.: Efficient multi-label classification with many labels. In: International Conference on Machine Learning, pp. 405–413 (2013)